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Abstract. Clinical event sequences consist of hundreds of clinical events
that represent records of patient care in time. Developing accurate predic-
tive models of such sequences is of a great importance for supporting a
variety of models for interpreting/classifying the current patient condition,
or predicting adverse clinical events and outcomes, all aimed to improve
patient care. One important challenge of learning predictive models of
clinical sequences is their patient-specific variability. Based on underlying
clinical conditions, each patient’s sequence may consist of different sets of
clinical events (observations, lab results, medications, procedures). Hence,
simple population-wide models learned from event sequences for many
different patients may not accurately predict patient-specific dynamics of
event sequences and their differences. To address the problem, we pro-
pose and investigate multiple new event sequence prediction models and
methods that let us better adjust the prediction for individual patients
and their specific conditions. The methods developed in this work pursue
refinement of population-wide models to subpopulations, self-adaptation,
and a meta-level model switching that is able to adaptively select the
model with the best chance to support the immediate prediction. We ana-
lyze and test the performance of these models on clinical event sequences
of patients in MIMIC-III database.

1 Introduction

Clinical event sequence data based on Electronic Health Records (EHRs) consist
of hundreds of clinical events representing records of patient conditions and its
management, such as administration of medications, records of lab tests and
their results, measurements of various physiological signals, or various procedures.
Developing accurate temporal models for such sequences is extremely important
for development of various kinds of models defined on clinical data, such as models
for predicting adverse events and outcomes [12,40,58,63,64], interpretation of
the patient state [22,37,38,52,65], understanding the dynamics of the disease
and patient condition under different interventions, and/or detection of unusual
patient-management actions [18,19]. All of these may ultimately lead to improved
patient care.

One important challenge of learning highly accurate models of clinical se-
quences is patient-specific variability. Depending on the underlying clinical condi-
tion specific to a patient combined with multiple different management options
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one can choose and apply in patient care, the event patterns may vary widely
from patient to patient. Unfortunately, many modern event prediction models
and assumptions incorporated into the training of such models may prevent one
from accurately representing such a variability. The main challenge, which is also
the main topic of this paper, is how to modify or adapt these models to represent
better individual patient-specific behaviors and event sequences.

We study this important challenge in the context of neural autoregressive
models. Briefly, neural temporal models based on RNN, LSTM, and attention
mechanisms have recently became very popular and widely used for defining and
solving various kinds of clinical predictions and representation tasks [6,7,8,9],
including clinical event time-series prediction [23,24,25,26,27,33]. However, when
these models are built from complex multivariate clinical event sequences, the
aforementioned neural models may fail to accurately model patient-specific
variability due to their limited ability to represent distributions of dynamic event
trajectories. Briefly, the parameters of neural temporal models are learned from
many patients data through Stochastic Gradient Descent (SGD) and are shared
across all types of patient sequences. Hence, the population-wide models tend to
average out patient-specific patterns and trajectories in the training sequences.
Consequently, they are unable to predict accurately all aspects of patient-specific
dynamics of event sequences and their patterns.

To address the above problem, we propose, develop, and study two novel event
time-series prediction solutions that attempt to better adapt the population-wide
models to the individual patient as shown in Figure 1. First, we propose a model
that aims to improve a prediction made for the current patient at any specific time
using a repository of event sequences recorded for past patients. The model works
by first identifying the patient states among past patients that are most similar
to the current state of the current patient and then adapting the predictions of
the population-wide model with the help of outcomes recorded for such patients
and their states. We refer to this model as the subpopulation model. Second, we
develop and study a model that adapts the predictions of the population-wide
model only based on the patients’ own sequence. We refer to this model as
the self-adaptation model. However, one concern with either the sub-population
or the self-adaptation model and related adaptation is that it may lose some
flexibility by being fit too tightly to the specific patient (and patient’s recent
condition) or to the patient state most similar to the current state. To address
this, we also develop and investigate the meta-switching framework that is able to
dynamically identify and switch to the best model to follow for the current patient.
Briefly, the meta-framework uses a set of models and learns how to adaptively
switch to the model offering the most promising solution. Such a framework
may combine the population, subpopulation, and self-adaptation models. This
work extends our previous published work titled “Neural Clinical Event Sequence
Prediction through Personalized Online Adaptive Learning” [28]. Based on the
foundational personalization methods we studied in the previous work, this
work advances adaptive model selecting approaches such as subpopulation-based
adaptation, combined adaptation, and meta-level switching mechanisms which
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Fig. 1: Overview of approaches we introduced in this work. Along with population
model that is trained on all patient data in training set, we explore personalized
models that let us better adjust the prediction for individual patient and their
specific conditions. The personalized models we study include sub-population
model that is trained on the instances of the most similar other patients, self-
adaptation model that is trained on the target patient’s own past sequence, and
combined model that is trained on a dataset combines the two aforementioned
data. In this work, we further study meta online switching mechanism that learns
to select best performing model’s outcome among a pool of models.

greatly increased prediction performance over the methods presented in the
previous work. We note, that all of the above solutions can extend RNN-based
multivariate sequence prediction to support personalized clinical event sequence
adaptation. We demonstrate the effectiveness of both solutions on clinical event
sequences derived from real-world EHRs data from MIMIC-3 Database [20].

2 Related Work

The problem of fitting patient-related outcomes and decisions as close as pos-
sible to the target individual has been an essential topic of recent biomedical
research and personalized medicine. We briefly list several approaches that build
personalized machine learning models for clinical data in the following.

2.1 Subpopulation Models

One classic personalization approach identifies a small set of traits or features that
help to define a subpopulation (patient subtype) the patient belongs to, builds a
model for the subpopulation, and applies it if a patient from that subpopulation
is encountered.

A straightforward way to define a subpopulation is to use initial clinical
observations and demographics. For example, Afrose et al. [1] and Barda et
al. [3] create patient subgroups with demographic traits such as race and age.
They used the patient subpopulation to solve the data imbalance problem for
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underrepresented groups in predicting clinical outcomes such as mortality and
length of stay. They first learn subpopulation-specific adjustment bias values for
calibration purposes. Then, a model’s classification outputs are adjusted based
on the learned bias values.

Another approach to defining patient subpopulation is to use clustering
methods. For complex clinical data with various types of features, this method
has the advantage that it can reveal the latent (hidden) structure and relationship
regardless of the complexity of the data representation. In addition, a clustering
method can be used for any data representation where the distance metric (or
equivalently similarity measure) between data points can be defined.

Many earlier works on this approach focused on clustering static patient
representation such as demographics and symptoms of disease [21,31,43,61].
More recent work focus on clustering longitudinal patient representation such as
trajectories of biomarkers of kidney function [36], opioid usage [41], or lab test
orders [53]. Since this approach considers dynamic changes of clinical features in
the data, the discovered patient clusters provide a valuable opportunity for clinical
data analysis, such as understanding disease progression [36,53] or developing
more accurate prediction models [41]. For clustering, many earlier works directly
use K-means, DBSCAN, or hierarchical clustering algorithms on the top of the
features [13,36,41,53], and recent works use deep learning based methods to
obtain more compact feature representation over the complex clinical data [4,67].

2.2 Patient-specific Models

A more flexible approach to personalized clinical models is to develop patient-
specific models that can identify the subpopulation of patients relevant to the
target patient by using a patient similarity measure and then build and apply
the patient-specific model online whenever the prediction is needed [15,47,62].

One important variability of the clinical time series data is the different
sequence lengths. As shown in Figure 6, while many patients stay in ICU very
short amount of time, smaller number of patients stay in ICU longer time. This
means little data is available for learning for the patients with longer length of stay.
Unnikrishnan and others addressed this issue by building patient-specific models
that are trained based on iteratively added most similar other long sequence
training instance data [60,59].

Another approach to developing patient-specific models is to use probabilistic
sequential latent variable models such as Gaussian Process [49] and Hidden
Markov Model [50]. These models have a certain probabilistic form, such as Gaus-
sian distribution for real-valued observations. The parameters for the probability
distribution (e.g., mean and variance for Gaussian distribution) are learned during
the training process. To build a personalized probabilistic latent variable model,
patient-specific terms are added to the probability distribution parameters. This
approach has shown good performance for predicting lab test value (trajectory)
of lung disease patients [49] and future complications of Parkinson’s disease [50].
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2.3 Online Adaptation Methods

However, in many sequential prediction scenarios, the models that are applied to
the same patient more than once create an opportunity to adapt and improve the
prediction from its past experiences and predictions. This online adaptation lets
one improve the patient-specific models and their prediction in time gradually.
The standard statistical approach can implement the adaptation process using
the Bayesian framework where population-based parameter priors combined
with the history of observations and outcomes for the target patient are used
to define parameter posteriors [5]. Alternative approaches for online adaptation
developed in literature use simpler residual models [34] that learn the difference
(residuals) between the past predictions made by population models and observed
outcomes on the current patient. Liu and Hauskrecht [34] learn these patient-
specific residual models for continuous-valued clinical time series and achieve
better forecasting performance.

2.4 Online Switching Methods

The online switching (selection) method is a complementary approach that has
been used to increase the prediction performance of online personalization models
by allowing multiple (candidate) models to be used together [32,51]. At each
time in a sequential process, a switching decision is made based on the recent
prediction performance of each candidate model. For example, for continuous-
valued clinical time series prediction, Liu and Hauskrecht [35] have a pool of
population and patient-specific time series models, and at any point in time, the
switching method selects the best performing model.

2.5 Neural Clinical Event Sequence Prediction

EHR-derived clinical event sequence data consists of thousands of sparse and
infrequently occurring clinical events. In recent years, neural-based models have
become the most popular and also the most successful models for representing and
predicting EHR-derived clinical sequence data. The advantages of such models
are their flexibility in modeling latent structures, feature representation, and their
learning capability. Specifically, word embedding methods [39] are effectively used
to learn low-dimensional compact representation (embedding) of clinical concepts
[7,30] and predictive patient state representations [44,45,57]. For autoregressive
event prediction task, hidden state-space models (e.g., RNN, GRU) and attention
mechanism are applied to learn latent dynamics of patient states progression
and predict clinical variables such as diagnosis codes [37,38], ICU mortality risk
[64], heart failure onset [8], and multivariate future clinical event occurrences
[24,25,26,27,29,33]. For neural-based personalized clinical event prediction, most
works focus on using patient-specific feature embedding obtained from patient
demographics features [16,66]. A limitation of the approach is that complex
transitions of patient states in time cannot be modeled in a personalized way
through static feature embeddings. In this work, we develop and investigate
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methods for adapting modern autoregressive models based on RNN that have
been successfully applied to various complex clinical patient states and prediction
models.

3 Methodology

3.1 Neural Autoregressive Event Sequence Prediction

Our goal is to predict occurrences of multiple target events in clinical event
sequences. We aim to build an autoregressive model ϕ that can predict, at any
time t, the next step (target) event vector y′

t+1 from a history of past (input)
event vectors Θt = {y1, . . . ,yt}, that is, ŷ′

t+1 = ϕ(Θt). The event vectors are
binary {0, 1} vectors, one dimension per an event type. The input vectors are
of dimension |E| where E are different event types in clinical sequences. The
target vector is of dimension |E′|, where E′ ⊂ E are events we are interested in
predicting.

One way to build a neural autoregressive prediction model ϕ is to use Recurrent
Neural Network (RNN) with input embedding matrix Wemb, output linear
projection matrix Wo, bias vector bo, and sigmoid (logit) activation function σ.
At each time step t, the RNN-based autoregressive model ϕ reads new input yt,
updates hidden state ht, and generates prediction of the target vector ŷ′

t+1:

vt = Wemb · yt ht = RNN(ht−1,vt) ŷ′
t+1 = σ(Wo · ht + bo)

Wemb,Wo, bo, and RNN’s parameters are learned through SGD with loss
function L defined by the binary cross entropy (BCE):

L =
∑
s∈D

T (s)−1∑
t=1

e(y′
t+1, ŷ

′
t+1) (1)

e(y′
t, ŷ

′
t) = −[y′

t · log ŷ′
t + (1− y′

t) · log(1− ŷ′
t)] (2)

where D is training set and T (s) is length of a sequence s. This neural autore-
gressive approach has several benefits when modeling complex high-dimensional
clinical sequences: First, low-dimensional embedding with Wemb helps us to
obtain a compact representation of high-dimensional input vector y. Second,
complex dynamics of observed patient state sequences are modeled through RNN
which is capable of modeling non-linearities of the sequences. Furthermore, latent
variables of neural models typically do not assume a specific probability form.
Instead, the complex input-output association is learned through SGD based
end-to-end learning framework which allows more flexibility in modeling complex
latent dynamics of observed sequence.

However, the neural autoregressive approach cannot address one important
characteristic of the clinical sequence: the variability in the dynamics of sequences
across different patients. Typically, EHR-derived clinical sequences consist of
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medical history of several tens of thousands of patients. The dynamics of one
patient’s sequence could be significantly different from the sequences of other
patients. For typical neural autoregressive models, parameters of the trained
model are used to process and predict sequences of all patients which consist
of individual patients who can have different types of clinical complications,
medication regimes, or observed sequence dynamics.

3.2 Subpopulation-based Online Model Adaptation

To address the patient variability issue, we propose a novel subpopulation-based
learning framework that adapts the parameters of the neural autoregressive model
to the past patients’ sequences that are most similar to the current patient states.
For simplicity, we denote population model ϕP as a model trained on all training
set patient data D, and subpopulation model ϕS as a model that is trained on a
subset of training set data DS that is close to the current patient state. Both
models have identical model architecture.
Non-parametric Memory. The proposed learning framework is started by
training ϕP with D and executing inference run for each time step t′ ∈ T (s′) of
all train set patients s′ ∈ D. Then we define a key-value pair (kt′ , vt′) where the
key is the hidden state vector ht′ and the value is the target event vector yt′+1.
We store (kt′ , vt′) into non-parametric storage (memory) M.

M = {(ht,yt+1)|t ∈ T (s), s ∈ D} (3)

Subpopulation Model Initialization. Then for each test set patient, we
initialize ϕS with the parameters of ϕP to transfer general knowledge about
overall patient state representation and dynamics to ϕS . However, due to patient
variability issues, the parameters of ϕP could not be able to fully model the
current patient’s unique underlying clinical issues and status, and hence its
prediction can be limited to correctly predicting the future (next) clinical events.
Retrieval. We approach the aforementioned issue by adapting the parameters
of ϕS with additional subpopulation data DS which will be generated on the
fly at each time step t of the current patient sequence. The subpopulation data
DS is retrieved from M as a k -nearest neighbors N of the current patient’s
hidden state ht based on a distance function d(·, ·). In this study, we use L2

distance function which is RBF kernel. The hidden state ht is generated from
population model ϕP . Since the similarity is calculated on the low-dimensional
latent (hidden) state space defined by RNN, information from both the current
input events yt and the dynamics from the series of past events y1 . . .yt−1 is
used to compute the similarity between current patient and M.

DS = kNN(M,ht) (4)

Subpopulation Model Adaptation. We adapt the parameters of ϕS first by
computing an subpopulation error LS =

∑
(hi,yi+1)∈DS e(yi+1, ϕ

S(hi)). Then,

with LS we iteratively update parameters of ϕS via SGD. Stopping criterion for
the iterative update is: LS(τ − 1) − LS(τ) < ϵ where τ denotes the epoch of
adaptation update and ϵ is a positive threshold.
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3.3 Online Self-Adaptation Model

One limitation of the subpopulation-based model adaptation approach is that
we still miss the chance to model the unique dynamics of the current patient’s
states and its specificity. To address this issue, we propose another novel learning
framework that adapts the parameters of the neural autoregressive model to the
current patient states based on the patient’s past event sequence via SGD. We
refer to this patient (instance) specific model as ϕI . As described in Algorithm 1,
the online model adaptation procedure at time t for the current patient starts
by creating a self-adaptation model ϕI from the population model ϕP . Similar
to the subpopulation model, ϕI and ϕP have identical model architecture, and
values of parameters in ϕI are initialized from ϕP to transfer the knowledge about
general representation of patient states and their dynamics. Then, we compute
an online patient-specific error LI

t =
∑t−1

i=1 e(y
′
i+1, ŷ

′
i+1)K(t, i) that reflects how

much the prediction of ϕI deviates from the already observed target sequence for
the current patient. With LI

t , we iteratively update parameters of ϕI via SGD.
The same stopping criterion and training scheme of the subpopulation model is
used here for the iterative update of ϕI .
Discounting. Please note that our adaptation-based loss LI

t combines prediction
errors for all time steps of the current patient’s sequence. However, in order to
better fit it to the most recent patient-specific behavior, we weigh the loss more
towards recent clinical events. This is done by weighting prediction error for each
step i < t with K(t, i) that is based on its time difference from the current time
t. More specifically, K(t, i) defines an exponential decay function:

K(t, i) = exp
(
− |t− i|

γ

)
(5)

where γ denotes the bandwidth (slope) of exponential decay; if γ is close to +∞,
errors at all time steps have the same weight.
Online Adaptation of Model Components. The RNN model may have too
many parameters, and it may not help to adapt to all of them at the same time.
One solution is to relax and permit to adapt only a subset of parameters. On
the earlier work on self-adaptation model adaptation [28], three different settings
for adapting parameters are experimented and compared: (a) output layer only
(Wo, bo), (b) transition model (RNN) only, and (c) combination of (a) and (b).
From the experiment, (c) adapting only parameters of the output layer showed
the best performance for predicting events. Based on this finding, we adapt the
parameters of the output layer in this work.

3.4 Combined Adaptive Model

The common objective of the two (subpopulation and self-adaptation) adaptation
models is to represent better individual patient-specific behaviors and event
sequences. Indeed, the two models learn different types of information from
available patient event sequence data and they are complementary to each other.
By learning from the small pool of most similar past patients’ states and its
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Algorithm 1: Online Model Adaptation

Input :Population model ϕP , Current patient’s history of observed input
sequence Θt = {y1, . . . ,yt} and target sequence (y′

1, . . . ,y
′
t)

Initialize self-adaptation model ϕI from ϕP ; τ = 0; LC
t (0) = ∞;

repeat
τ = τ + 1;

LC
t (τ) =

∑t−1
i=1 e

(
y′
i+1, ŷ

′
i+1

)
·K(t, i) where ŷ′

i+1 = ϕI(Θi);

Update parameters of ϕI with LC
t (τ) via SGD;

until LC
t (τ − 1)− LC

t (τ) < ϵ;

Output : Self-adaptation model ϕI

outcome, the subpopulation model can cover dependencies between past and
future events which are observed in a small group of patients with specific
complications or diseases. On the other hand, the self-adaptation model learns
unique dynamics and characteristics of the current patient’s own past event
sequence. Meanwhile, the best way to maximize the gain from the two different
approaches is to unify the two methods, and the effective yet straightforward way
to unify the two approaches is to combine the two losses LS and LI together:

LC = LI + µ · LS (6)

In this work, we have the combined adaptation model ϕC that is trained on
LC and report its performances along with the previous two approaches.

3.5 Meta Switching Mechanism

One limitation of the online adaptation approach is that it tries to modify the
dynamics to fit more closely to the specifics of each patient’s own sequence or
other similar patients’ sequences. However, when the patient’s state changes
suddenly due to recent events (e.g., a sudden clinical complication such as sepsis),
the parameters of the adapted models (ϕS,I,C) may not be able to adapt quickly
enough to these changes. In such a case, switching back to a more general
population model could be more desirable.

Model switching framework [35,51] can resolve this issue by dynamically
switching among a pool of available models such as subpopulation model ϕS , self-
adaptation model ϕI , combined adapted model ϕC , and the population model ϕP .
Driven by the recent performance of models, it can switch to the best performing
model at each time step. Algorithm 2 implements the model switching idea.
Given a trained population model ϕP , online adapted models ϕS,I,C trained via
online adaptation, and the current patient’s observed sequence, we can compute
discounted losses LP,S,I,C for these models on the past data. By comparing these
losses, we select the model that gives the lowest error (averaged over |E| event
types) and use it for predicting the next step. We refer to prediction based on
this meta switching mechanism as meta-switching.
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A simple yet powerful extension of the meta switching mechanism is to allow
selecting the best model for each event type (event-specific meta switching). One
restriction of the aforementioned meta switching mechanism is that one single
best model is selected at each time step and the model’s prediction for the next
time step is used as the output of the meta switching mechanism. We relax this
restriction by having per event type meta switching mechanism. That is, for each
event type we select the best model among a pool of all available models based
on each model’s performance at the previous time step for each specific event
type. This method is referred to as meta-switching-event.

Algorithm 2: Meta Model Switching

Input :ϕP , ϕI , ϕS , ϕC Θt = {y1, . . . ,yt},(y′
1, . . . ,y

′
t)

LI =
∑t

i=1 e(y
′
i+1, ŷ

′I
i+1) ·K(t, i) where ŷ′I

i+1 = ϕI(Θi);

LP =
∑t

i=1 e(y
′
i+1, ŷ′P

i+1) ·K(t, i) where ŷ′P
i+1 = ϕP (Θi);

LS =
∑t

i=1 e(y
′
i+1, ŷ′S

i+1) ·K(t, i) where ŷ′S
i+1 = ϕS(Θi);

LC =
∑t

i=1 e(y
′
i+1, ŷ′C

i+1) ·K(t, i) where ŷ′C
i+1 = ϕC(Θi);

ŷ′
t+1 = ŷ′z

t+1 where z = argminz∈{I,P,S,C}
(
Lz

)
Output :Prediction at time step t+ 1: ŷ′

t+1

4 Experimental Evaluation

4.1 Experiment Setup

Clinical Sequence Generation. From MIMIC-3 [20], publicly available EHR
database, we extract 5137 patients using the following criteria: (1) patient’s age
is between 18 and 99, (2) length of admission is between 48 and 480 hours, and
(3) clinical records are stored in Meta Vision system, one of the systems used
to create MIMIC-3 database. We randomly split the 5137 patients into train
and test sets with 80/20 % split ratio. From the extracted records, we generate
multivariate event sequences with a sliding-window method. As shown in Figure 2,
we segment the original EHR-derived clinical time-series data in continuous time
using a non-overlapping moving window. The events that occurred in a single
window of W=24 hours are represented by a binary vector yt ∈ 0, 1|E| that
covers all event occurrences spanning the period covered by the window where t
denotes a time-step of the window and E is a set of event types. At any point
in time t, a sequence of vectors created from previous time windows defines an
(input) sequence. A vector representing events in the next time window defines
the prediction target.
Feature Extraction. EHR contains thousands of different clinical event types.
For efficient modeling we use clinical events that are representative of patient
conditions and clinical actions. With this regard, we use four clinical event
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categories: medication administration events, lab results events, procedure events,
and physiological result events. Recent studies in clinical event prediction for EHR
data show that using occurrence information (presence/absence) of laboratory
tests is more informative than using the measured values of laboratory tests
[2,11,54]. Hence, for the lab test and physiological results events, we use occurrence
information of each event instead of the values of the observation. For medication,
lab, and procedure event categories, we filter out those events observed in less
than 500 different patients. For physiological events, we select 16 important
event types with the help of a critical care physician. This process results in
65 medications, 44 procedures, 155 lab tests, and 19 physiological events. The
number of the resulting total event (|E|) is 283.

time

Medication “a”

Physiological event “b”

Lab test ”c”
Procedure “d”

1

0

1

0

0

1

1

1

1

0

1
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𝑦! 𝑦" 𝑦# 𝑦$

Window size = W (e.g., 24hr)

Raw EHR Data

Time-Discretized Multivariate Event Sequence Data

Fig. 2: Time discretization of multivariate event sequence data. The original
EHR-derived clinical time-series data consists of event occurrences in continuous
time. We discretized them using a non-overlapping moving window. The events
occurred in a single window are represented by a binary vector yi ∈ 0, 1|E| that
cover all event occurrences spanning the period covered by the window.

Baseline Models. We compare proposed models to the following baselines:

– GRU-based POPulation model (GRU-POP): For RNN-based time-
series modeling described in Section 3.1, we use Gated Recurrent Units (GRU)
[10] (λ =1e-05). With its ability to overcome vanishing gradient issue of RNN,
GRU has been widely used in many areas of prediction and modeling of
sequence data such as time series [14,56], speech [17,46], and language [55]
problems and many others. For this reason, we choose GRU as a foundational
sequence modeling architecture in this work. The proposed self-adaptation
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model (SelfAdapt), Sub-population adaptation model (SubpopAdap), and
Combined adaptation model (CombinedAdap) have the same architecture
as the population model.

– REverse-Time AttenTioN (RETAIN): RETAIN is a representative
work on using attention mechanism to summarize clinical event sequences,
proposed by Choi et al. [8]. It uses two attention mechanisms to comprehend
the history of GRU-based hidden states in reverse-time order. For multi-label
output, we use a sigmoid function at the output layer. (λ =1e-05)

– Logistic regression based on Convolutional Neural Network (CNN):
This model uses CNN to build predictive features summarizing the event his-
tory of patients. Following Nguyen et al. [42], we implement this CNN-based
model with a 1-dimensional convolution kernel followed by ReLU activation
and max-pooling operation. To give more flexibility to the convolution opera-
tion, we use multiple kernels with different sizes (2,4,8) and features from
these kernels are merged at a fully-connected (FC) layer. (λ =1e-05)

Model Parameters. We use embedding dimension 64, hidden state dimension
512, for all neural models. The population model, RETAIN, and CNN use learning
rate 0.005 and adaptive models use 0.005. To prevent over-fitting, we use L2
weight decay regularization during the training of GRU-POP, RETAIN, and
CNN, and the weight λ is determined by the internal cross-validation set (range:
1e-04, 1e-05, 1e-06, 1e-07). For the SGD optimizer, we use Adam. For the early
stopping criteria parameter, we set ϵ=1e-04. For kernel bandwidth γ, we use
fixed value 3.0.
Evaluation Metric. We use the area under the precision-recall curve (AUPRC)
as the main evaluation metric. AUPRC is known for presenting a more accurate
assessment of the performance of models for a highly imbalanced dataset [48].

4.2 Results on Personalized Adaptive Models vs. Population Model

We first compare the prediction performance of the population model (GRU-POP)
and the proposed methods on different adaptation mechanisms: subpopulation-
based adaptation (SubpopAdap), self-adaptation (SelfAdapt), and combined
adaptation (CombinedAdap) which uses both subpopulation and self-adaptation
approaches for personalized model adaptation. As shown in Figure 3, the combined
adaptation model and self-adaptation model clearly outperform the population-
based model across most of the time steps. Especially on earlier days of admissions
(day=1-3), the self-adaptation model performs better than the population model
with a decent margin. But subpopulation model underperforms than the popu-
lation model and it also affects the combined model’s performance on the first
time step (day) in Figure 3. But as time progresses, the overall performance
gap between the combined model and the population model is increasing. On
day 19, while the self-adaptation model’s performance is almost the same as the
population model, the combined model’s performance significantly outperform
than population model with the help of information from the subpopulation
model. That is, we can see that when subpopulation model is solely used, it
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underperforms than population model overall. This is somehow expected as
the parameters of subpopulation model are indirectly tuned (adapted) to the
current patient through k-nearest neighbor retrieval of other similar patients
from the training set data. Therefore, the specificity of the current patient’s
underlying states is not directly modeled into the parameters of subpopulation
model. Nonetheless, the benefit of subpopulation model is revealed through
the competency of the combined model. That is, the improved performance of
combined model compared to patient specific model can be understood as the
additional information provided through the subpopulation model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time (Day)

30

40

50

60

70

AU
PR

C

model
GRU-POP
SubpopAdap
SelfAdap
CombinedAdap

Fig. 3: Prediction performance (AUPRC) of the population-based model (GRU-
POP) and proposed personalized models based on different mechanisms:
subpopulation-based adaptation (SubpopAdap), self-adaptation (SelfAdapt),
and combined adaptation (CombinedAdap) which uses both subpopulation and
self-adaptation approaches for personalized online adaptation.

4.3 Results for Meta Switching Mechanism

We also experiment with meta online switching approach. It chooses the best
predictive model from among a pool of available prediction models. We run the
method to choose among the population-based model ϕP and different adaptation
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model AUPRC

CNN 37.14

RETAIN 34.00

GRU-POP 37.54

SubpopAdap 33.84

SelfAdapt 46.25

CombinedAdap 47.08

Meta-Switch 49.28

Meta-Switch-Event 64.78

Table 1: Prediction results of all models averaged across all time steps

models based on subpopulation ϕS , self-adaptation approach ϕI , and combined
approach ϕC .

As shown in Figure 4, models that rely on multiple models and online
switching clearly outperform baseline models of GRU-POP, CNN, and RETAIN.
In particular, the event-specific extension of the meta switching mechanism
(Meta-Switch-Event) greatly surpasses the prediction performances of all other
models. This shows flexibility in selecting the best model for each event type at
each time step substantially benefits the task of predicting complex multivariate
clinical event sequence which consists of heterogeneous individual event time
series where each has different temporal characteristics and dependencies to
precursor events.

When the prediction performance is averaged across all time steps, we can
observe that the event-specific meta-switching mechanism outperforms all models
as shown in Table 1. Particularly, the event-specific meta switching mechanism’s
AUPRC is +71% higher than the population model. The non event-specific
version of meta switching increases AUPRC by 31% from the population model.
These results reveal the distinct advantage added by the meta online switching
methods.

When the model switches? To have a better understanding of the behavior of
online meta switching-based adaptation, we investigate when the model switches
to each model among a pool of available models including the subpopulation
model, self-adaptation model, combined model, and population model. First,
we analyze the proportion of how many times each model is used at each time
step across all test-set patient sequences from the meta-switching mechanism.
As shown in Figure 5, in the first time step, the population model is used 28%
and the subpopulation model is used 14%. Then, subsequently, the usage ratio of
the two models drastically decreased, and the self-adaptation model combined
model is mostly used in later time steps. Especially, although the direct ratio of
the subpopulation model is in general low, its contribution can be found in the
fact that the combined model is dominantly used across most time steps (day 2
through day 15). Around the end of the time steps (day 16 through day 19), the
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Fig. 4: Performance of meta online switching method (Meta-Switch) with popula-
tion and self-adaptation adaptation models, and its extension to event-specific
switching mechanism (Meta-Switch-Event). Meta online switching methods clearly
outperform all baseline models (GRU-POP, RETAIN, CNN)

ratio for the self-adaptation model is quickly increasing. This can be explained
by the fact that self-adaptation models can have enough observations to adapt
the patient-specific variability in that latter time of sequences and it can be a
model that provides the best prediction among the pool of all available models.
To properly interpret the results, Figure 6 shows the number of patients in each
time step. This number can also be interpreted as the length of patient sequences
and their volume. We can clearly see that the number of patients with longer
sequences is very small, as the majority of sequences are very short. For example,
patients with sequences longer than 13 days of admission are only about 12%
of all patients in the test set. From this, we can conclude that the population
model is often biased towards the dynamics and characteristics of shorter patient
sequences. Meanwhile, proposed online adaptation models can effectively learn
and adapt better to the dynamics of longer sequences.

Predicting Repetitive and Non-Repetitive Events. To perform this anal-
ysis, we divide event occurrences into two groups based on whether the same
type of event has or has not occurred before. We compute AUPRC for each
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group as shown in Table 2. The results show that for non-repetitive events,
the performance of the self-adaptation model is the lowest among all models.
This is expected because, with no previous occurrence of a target event, the
self-adaptation model could have difficulty making an accurate prediction for
the new target event. In this case, we can also see the benefit of the online
switching mechanism: the prediction of the population model is more accurate
than the self-adaptation model, and the online switching mechanism correctly
chooses the population model. More specifically, Meta-Switch mechanism recovers
most of the predictability of GRU-POP for non-repetitive event prediction. For
repetitive event prediction, we can see that both population models and
personalized adapted models have similar performances. However, the online
switching approaches (Meta-Switch and Meta-Switch-Event) are the best and
outperform all other approaches.

Event-type-specific Performance. We also examine the performance of the
online meta switching model (Meta-Switch-Event) compared to the population
model (GRU-POP) at the individual event level. Specifically, for each event type,
we compute two statistics: first, we compute the percentage difference (%+)
between the two models, and then we compute each event type’s occurrence
rate in all possible time windows (W=24), averaged across all test set patient
sequences. Then, we plot the two statistics in a scatter plot as shown in Figure 7.
Even the correlation coefficient is weak (-0.24), we can see those event types that
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Non-repetitive Repetitive

CNN 15.95 47.79

RETAIN 16.61 47.70

GRU-POP 16.29 48.19

SubpopAdap 14.03 46.69

SelfAdapt 13.00 48.17

CombinedAdap 14.63 48.07

Meta-Switch 16.30 51.01

Meta-Switch-Event 42.93 69.12

Table 2: Prediction result on non-repetitive and repetitive event groups. For
non-repetitive events, the performance of the self-adaptation model is the lowest.
However, the online switching approaches (Meta-Switch, Meta-Switch-Event)
recover the predictability by switching to the population model and show the
best performance across both groups.

have larger performance gaps (e.g., > 100%+) are indeed less occurring events
(e.g., occurrence rate < 0.1). This also reveals that our proposed approaches
effectively improve prediction performance, especially for events with smaller
data points. It is a valuable characteristic for clinical event time-series prediction
where data are usually scarce. The full set of event-specific results can be found
in Tables in the Appendix.

Results based on Event Categories. We analyze the experimental results
further into breaking the evaluation results down by inspecting the performances
of the models for the four different event categories: medication administration
events, lab test events, physiological events, and procedure events. For all |E|=282
target event types, we averaged prediction performances of them based on the
four event categories. The results are shown in Figure 8. Clearly, the proposed
methods (Combined Adaptation model, Meta switch mechanism, and Event-
specific meta switch mechanism) consistently outperform baseline models across
all event categories in AUPRC statistics over all time-steps. Especially, the results
of event-specific meta switch mechanism (Meta-Switch-Event) are on a par.

5 Conclusion

In this work, we have proposed and investigated multiple new event sequence
prediction models and methods that let us better adjust the prediction for
individual patients and their specific conditions. The methods developed in
this work pursue refinement of population-wide models to subpopulations, self-
adaptation, and a meta-level model switching that is able to adaptively select the
model with the best chance to support the immediate prediction. These models
are of a great importance for defining representations of a patient state and
for improving care. We demonstrated the improved performance of our models
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Fig. 7: Scatter plot on performance difference between the population model
(GRU-POP) and online meta switching-based adaptation model (Meta-Switch-
Event) and occurrence rate of each event type.

through experiments on MIMIC-3, a publicly available dataset of electronic
health records for ICU patients. Nonetheless, to be deployed our work has
a few limitations and we want to further explore these limitations in future
research. Firstly, these models need to be regularly re-trained to adapt their
parameters to dynamically changing patient conditions, and we need to study
further about optimal strategy for model update. The too short time interval
between two consecutive recurring training sessions may cause instability in
the model parameter. The long interval may fail to capture details of patient
dynamics and deter such models’ efficacy for predictive care. Future studies
could investigate dynamic model parameter update, store, and retrieval strategies.
Secondly, since we create and train individual models for each patient, we need to
have a sufficient scalable computing infrastructure to be able to serve thousands
of patients in real-time concurrently. Overall, while our work has demonstrated
promising results, further research is needed to fully evaluate and validate the
potential of our proposed models for clinical practice.
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(d) Procedure

Fig. 8: Prediction results by the event type category
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Appendix

Table 3: Performance of each lab test event, sorted by performance gain between
Meta-Switch-Event vs. GRU-POP

Lab Test Event Types Freq. CNN RE
TAIN

GRU-
POP

Sub-
pop
Adap

Self
Adap

Com
bined
Adap

Meta-
Switch

Meta-
Switch-
Event

Gain
(GRU-
POP
vs.
Meta-
Switch-
Event.

[Chemistry/Blood] Benzo-
diazepine Screen

0.002 0.17 0.50 0.50 0.45 0.28 14.40 15.12 24.10 6811.2

[Chemistry/Urine] Benzodi-
azepine Screen, Urine

0.002 0.23 2.40 1.38 0.86 0.31 34.91 24.82 29.56 5511.0

[Chemistry/Urine] Opiate
Screen, Urine

0.002 0.19 0.99 0.95 0.53 0.33 11.27 11.69 16.68 5075.9

[Chemistry/Blood] C-
Reactive Protein

0.006 0.62 1.11 1.73 0.91 1.13 7.97 8.31 7.68 2916.4

[Chemistry/Urine]
Methadone, Urine

0.001 0.13 1.18 1.18 0.62 0.37 1.76 1.21 1.23 2548.7

[Chemistry/Urine] Barbitu-
rate Screen, Urine

0.001 0.12 0.89 1.19 0.70 0.38 2.28 1.17 1.47 2365.8

[Chemistry/Urine] Am-
phetamine Screen, Urine

0.001 0.12 0.93 1.22 0.70 0.38 2.27 1.30 1.46 2345.4

[Chemistry/Urine] Cocaine,
Urine

0.001 0.13 1.24 1.34 0.68 0.37 1.82 1.20 1.31 2263.6

[Chemistry/Urine] Pro-
tein/Creatinine Ratio

0.005 0.50 1.09 1.80 1.44 1.32 3.69 8.78 8.11 1689.6

[Chemistry/Blood] Thyrox-
ine (T4), Free

0.005 0.53 0.58 0.71 0.88 0.73 2.47 1.92 2.81 1512.3

[Chemistry/Blood] Digoxin 0.013 1.30 2.97 5.27 3.33 2.04 25.87 24.68 25.51 1496.9
[Hematology/Blood] Sedi-
mentation Rate

0.005 0.52 1.42 1.85 1.58 1.14 6.67 6.89 6.31 1388.8

[Chemistry/Urine] Total
Protein, Urine

0.006 0.56 1.32 2.45 2.06 1.49 3.77 8.23 8.05 1106.2

[Blood Gas/Blood] Calcu-
lated Bicarbonate, Whole
Blood

0.005 0.54 2.51 1.43 1.39 0.86 2.93 2.64 3.46 973.5

[Chemistry/Blood] Choles-
terol, LDL, Calculated

0.004 0.38 0.95 0.63 0.80 0.63 0.63 0.53 0.75 971.9

[Chemistry/Blood] Choles-
terol, Total

0.005 0.54 1.01 0.78 0.95 0.77 0.85 0.73 0.91 920.8

[Chemistry/Blood] Choles-
terol, HDL

0.004 0.44 0.94 0.69 0.89 0.72 0.76 0.67 0.83 912.9

[Chemistry/Blood] Choles-
terol Ratio (Total/HDL)

0.004 0.41 0.95 0.68 0.89 0.73 0.75 0.69 0.85 909.9

[Chemistry/Blood] Vita-
min B12

0.006 0.58 1.78 1.16 1.16 0.86 0.68 0.69 0.84 872.5

[Chemistry/Blood] Ferritin 0.013 1.34 1.78 1.75 1.68 1.43 2.49 1.78 2.03 789.7
[Chemistry/Blood] Folate 0.005 0.50 3.46 0.91 1.29 0.63 0.71 0.55 0.78 785.6
[Hematology/Urine] Transi-
tional Epithelial Cells

0.007 0.71 1.14 1.20 1.35 0.87 0.89 1.06 1.48 754.1

[Chemistry/Blood] Protein,
Total

0.006 0.57 0.83 1.53 1.39 1.03 1.68 1.19 1.47 738.7

[Chemistry/Blood] Trans-
ferrin

0.014 1.42 1.72 2.57 1.80 1.63 1.41 1.52 1.84 677.0

[Chemistry/Blood] Iron
Binding Capacity, Total

0.014 1.42 1.72 2.57 1.80 1.63 1.41 1.52 1.84 673.5

[Chemistry/Blood] Iron 0.015 1.46 1.80 2.59 1.87 1.65 1.42 1.54 1.83 662.1
[Chemistry/Blood] NT-
proBNP

0.006 0.56 1.44 1.75 1.68 0.71 1.77 1.13 1.93 643.0
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[Chemistry/Blood] Barbitu-
rate Screen

0.001 0.08 0.95 0.58 0.80 0.33 0.69 0.23 0.80 589.9

[Chemistry/Blood] Tri-
cyclic Antidepressant
Screen

0.001 0.09 0.90 0.46 0.82 0.31 0.62 0.21 0.75 577.1

[Chemistry/Blood] Thyroid
Stimulating Hormone

0.018 1.77 2.48 2.27 2.32 2.11 2.22 2.71 2.76 576.9

[Hematology/Blood] Retic-
ulocyte Count, Automated

0.013 1.28 2.20 2.86 2.74 1.91 2.17 1.81 2.44 557.2

[Chemistry/Blood] Red
Top Hold

0.004 0.44 1.67 2.62 2.36 1.77 2.06 1.58 2.07 552.5

[Hematology/Other Body
Fluid] Monos

0.006 0.58 1.23 2.08 2.03 1.57 1.65 1.24 3.77 549.7

[Hematology/Other Body
Fluid] Polys

0.006 0.58 1.21 2.08 2.03 1.57 1.65 1.24 3.76 549.5

[Hematology/Other Body
Fluid] Lymphocytes

0.006 0.58 1.25 2.08 2.04 1.57 1.65 1.24 3.77 549.0

[Hematology/Urine] Granu-
lar Casts

0.016 1.56 3.44 3.25 2.80 1.83 2.39 2.22 2.94 494.5

[Hematology/Urine] Amor-
phous Crystals

0.010 0.98 1.89 2.28 2.43 1.44 1.96 1.94 2.50 476.5

[Blood Gas/Blood]
Alveolar-arterial Gra-
dient

0.017 1.71 3.41 6.13 5.17 3.37 12.65 9.11 13.15 456.3

[Blood Gas/Blood] Re-
quired O2

0.017 1.71 3.51 6.18 5.21 3.38 12.68 9.11 13.17 452.2

[Chemistry/Blood] Triglyc-
erides

0.023 2.26 5.06 6.44 8.21 3.81 11.67 9.53 8.89 350.4

[Chemistry/Blood] Blue
Top Hold

0.009 0.86 3.90 3.81 4.12 2.33 3.66 4.18 5.72 347.9

[Chemistry/Blood] %
Hemoglobin A1c

0.003 0.32 1.03 0.94 2.11 1.16 0.76 0.76 1.03 330.7

[Hematology/Urine] Urine
Mucous

0.018 1.81 6.50 5.70 4.90 3.43 3.61 3.50 6.99 307.3

[Blood Gas/Blood] O2
Flow

0.017 1.73 5.70 6.13 6.62 3.26 5.07 6.47 6.64 306.5

[Chemistry/Blood] Cortisol 0.013 1.27 3.30 4.49 5.23 2.46 3.25 4.02 3.67 292.0
[Hematology/Urine] Hya-
line Casts

0.036 3.59 5.54 6.25 5.79 4.16 4.90 4.63 6.80 289.3

[Hematology/Blood] Fibrin
Degradation Products

0.012 1.23 12.67 12.18 12.95 5.02 20.96 22.96 24.73 287.7

[Chemistry/Urine] Potas-
sium, Urine

0.033 3.34 8.98 8.15 7.45 5.27 6.67 6.86 9.55 270.1

[Chemistry/Urine] Chlo-
ride, Urine

0.031 3.11 7.87 8.44 7.16 4.79 5.91 5.86 9.97 266.7

[Hematology/Blood] Nucle-
ated Red Cells

0.017 1.68 12.61 14.40 12.54 6.65 19.19 17.25 20.69 262.4

[Chemistry/Blood] Hap-
toglobin

0.022 2.21 6.26 8.33 7.45 5.07 6.50 6.79 8.05 260.8

[Chemistry/Blood] Biliru-
bin, Direct

0.031 3.14 11.55 15.72 13.61 6.64 17.14 15.31 17.62 244.9

[Chemistry/Blood] Biliru-
bin, Indirect

0.030 2.95 11.67 15.57 13.59 6.73 17.09 15.45 17.69 244.5

[Chemistry/Urine] Urea Ni-
trogen, Urine

0.030 2.97 7.38 7.07 7.55 5.12 6.01 5.41 7.43 225.5

[Chemistry/Urine] Osmolal-
ity, Urine

0.037 3.65 8.30 10.19 8.50 5.46 7.14 6.93 9.64 223.4

[Blood Gas/Blood] Chlo-
ride, Whole Blood

0.033 3.27 12.63 11.87 12.50 7.97 12.20 12.18 18.31 210.6

[Chemistry/Urine] Sodium,
Urine

0.046 4.62 9.18 11.20 9.45 6.52 7.77 7.18 10.77 210.0

[Chemistry/Urine] Length
of Urine Collection

0.023 2.32 11.08 13.58 11.25 6.73 11.88 10.96 14.12 209.0

[Hematology/Urine] Bacte-
ria

0.059 5.86 9.49 11.49 11.14 8.44 9.65 9.40 16.82 208.0

[Chemistry/Urine] Creati-
nine, Urine

0.051 5.06 10.40 11.68 10.33 7.35 8.94 8.90 11.17 203.7

[Hematology/Urine] RBC 0.096 9.58 11.31 13.45 12.98 10.91 11.40 11.51 17.46 195.0
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[Blood Gas/Blood] Sodium,
Whole Blood

0.041 4.10 15.09 14.41 14.44 9.97 14.20 14.11 21.21 194.9

[Hematology/Urine] WBC 0.099 9.88 11.67 13.28 12.89 11.33 11.20 11.22 16.56 193.6
[Hematology/Urine] Yeast 0.102 10.23 11.91 13.75 13.25 11.69 11.67 11.80 17.03 189.8
[Hematology/Urine] Ep-
ithelial Cells

0.095 9.49 11.14 13.21 12.63 10.89 10.83 10.65 16.22 189.4

[Hematology/Urine] Pro-
tein

0.104 10.44 12.60 15.57 15.04 12.64 13.26 13.16 20.04 176.2

[Hematology/Urine] Glu-
cose

0.079 7.86 11.69 14.56 14.51 11.42 12.56 12.37 20.06 170.8

[Hematology/Urine] Urine
Color

0.079 7.88 11.67 14.37 14.47 11.66 12.51 12.31 20.27 167.6

[Hematology/Urine] Uro-
bilinogen

0.083 8.29 12.07 14.62 14.54 11.53 12.39 12.16 19.87 166.7

[Hematology/Urine] Ke-
tone

0.081 8.08 11.88 14.77 14.54 11.54 12.37 12.11 19.74 166.3

[Hematology/Urine] Leuko-
cytes

0.075 7.55 11.77 14.54 14.56 11.50 12.55 12.37 20.35 165.7

[Hematology/Urine] Nitrite 0.075 7.55 11.77 14.53 14.57 11.50 12.56 12.35 20.33 165.3
[Hematology/Urine] Blood 0.076 7.56 11.77 14.51 14.58 11.50 12.54 12.33 20.34 164.9
[Hematology/Urine] Biliru-
bin

0.075 7.55 11.75 14.52 14.59 11.50 12.55 12.37 20.32 164.9

[Hematology/Urine] Urine
Appearance

0.076 7.59 11.76 14.53 14.58 11.51 12.47 12.30 20.21 164.0

[Hematology/Urine] pH 0.128 12.83 14.79 17.34 16.94 14.52 14.84 14.79 20.70 163.8
[Hematology/Urine] Spe-
cific Gravity

0.128 12.77 14.73 17.28 16.91 14.47 14.68 14.69 20.51 162.7

[Chemistry/Blood] Lipase 0.063 6.31 22.39 26.48 22.95 15.84 28.30 26.65 29.92 161.2
[Blood Gas/Blood] Hemat-
ocrit, Calculated

0.036 3.63 15.31 14.00 14.84 9.37 13.62 13.27 17.66 156.4

[Blood Gas/Blood]
Hemoglobin

0.036 3.63 15.46 14.01 14.83 9.36 13.59 13.26 17.65 156.4

[Hematology/Blood] Ovalo-
cytes

0.008 0.82 8.57 12.80 12.61 7.12 8.41 8.41 10.53 151.9

[Hematology/Blood]
Platelet Smear

0.020 2.00 19.11 21.05 21.32 13.14 23.75 23.07 28.03 130.9

[Chemistry/Blood] Uric
Acid

0.013 1.34 29.28 55.57 34.24 14.25 58.65 59.16 58.09 126.4

[Chemistry/Blood] Amy-
lase

0.055 5.55 25.31 29.03 26.56 17.02 27.90 27.69 30.53 121.3

[Chemistry/Blood] Tro-
ponin T

0.055 5.45 23.30 25.24 26.39 18.14 26.29 25.99 30.05 115.5

[Chemistry/Blood] Crea-
tine Kinase (CK)

0.086 8.64 30.22 31.47 30.75 23.48 30.89 29.64 33.11 103.3

[Chemistry/Blood] Crea-
tine Kinase, MB Isoenzyme

0.063 6.34 27.39 27.30 27.06 20.59 24.27 24.13 27.42 102.6

[Hematology/Blood] Poly-
chromasia

0.020 1.96 20.66 24.49 24.19 14.41 20.91 20.57 26.58 100.7

[Hematology/Blood]
Macrocytes

0.020 1.96 20.69 24.52 24.20 14.41 20.91 20.57 26.58 100.7

[Hematology/Blood] Micro-
cytes

0.020 1.96 20.65 24.52 24.19 14.40 20.89 20.57 26.59 100.7

[Hematology/Blood] Poik-
ilocytosis

0.020 1.96 20.68 24.51 24.20 14.40 20.89 20.57 26.59 100.7

[Hematology/Blood]
Hypochromia

0.020 1.96 20.70 24.50 24.20 14.40 20.89 20.58 26.59 100.7

[Hematology/Blood] Aniso-
cytosis

0.020 1.96 20.65 24.49 24.20 14.40 20.89 20.57 26.59 100.6

[Hematology/Blood] Atypi-
cal Lymphocytes

0.061 6.08 32.85 34.66 32.45 20.98 33.31 30.90 37.74 86.4

[Hematology/Blood] Myelo-
cytes

0.061 6.09 32.91 34.69 32.50 21.01 33.28 30.85 37.70 85.8

[Hematology/Blood]
Metamyelocytes

0.061 6.09 32.92 34.70 32.52 21.01 33.28 30.84 37.70 85.7

[Blood Gas/Blood] Ventila-
tor

0.035 3.48 30.04 30.07 32.41 24.09 28.65 29.70 31.56 82.2

[Hematology/Blood]
Eosinophils

0.140 14.05 35.07 37.42 35.39 25.51 33.85 32.87 38.92 78.1
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[Hematology/Blood]
Basophils

0.140 14.05 35.07 37.42 35.39 25.51 33.84 32.86 38.89 78.1

[Hematology/Blood] Mono-
cytes

0.140 14.05 35.07 37.44 35.39 25.51 33.85 32.86 38.91 78.1

[Hematology/Blood] Lym-
phocytes

0.140 14.05 35.11 37.39 35.40 25.52 33.86 32.87 38.92 78.0

[Hematology/Blood] Neu-
trophils

0.140 14.05 35.09 37.42 35.42 25.52 33.86 32.87 38.93 78.0

[Hematology/Blood] Bands 0.066 6.63 33.84 35.39 33.82 21.92 32.93 30.68 37.85 76.3
[Chemistry/Blood] CK-MB
Index

0.012 1.24 35.22 30.10 29.95 18.79 24.33 23.17 25.69 75.4

[Chemistry/Blood] Van-
comycin

0.163 16.28 37.69 41.56 43.60 35.45 43.17 42.28 44.96 69.7

[Chemistry/Blood] Lactate
Dehydrogenase (LD)

0.176 17.55 43.05 46.33 43.14 32.72 44.28 42.45 47.22 69.4

[Chemistry/Blood] Albu-
min

0.174 17.36 40.20 42.62 40.26 31.57 37.46 37.54 41.57 63.4

[Hematology/Blood] Fib-
rinogen, Functional

0.070 7.02 40.69 47.27 43.11 31.26 44.59 42.20 46.07 62.5

[Chemistry/Blood] Osmo-
lality, Measured

0.027 2.67 35.22 45.82 45.28 31.38 47.90 46.69 48.85 59.1

[Chemistry/Blood] Es-
timated GFR (MDRD
equation)

0.028 2.81 13.95 9.92 12.11 9.20 4.53 6.80 6.16 58.3

[Blood Gas/Blood] Tidal
Volume

0.113 11.25 45.95 47.65 46.82 39.15 44.31 45.73 48.57 57.1

[Chemistry/Blood] Pheny-
toin

0.045 4.47 49.15 60.11 56.67 48.80 60.53 59.29 59.60 49.3

[Blood Gas/Blood] Ventila-
tion Rate

0.048 4.85 49.27 48.08 52.19 45.79 46.03 48.73 51.37 41.7

[Blood Gas/Blood] PEEP 0.144 14.39 54.64 56.14 55.38 47.14 52.93 52.72 57.01 41.2
[Blood Gas/Blood] Oxygen 0.162 16.24 55.16 56.87 55.57 46.86 52.27 52.01 56.00 40.2
[Blood Gas/Blood] Oxygen
Saturation

0.180 18.04 58.43 61.64 60.46 52.75 59.39 60.22 63.33 36.2

[Blood Gas/Blood] Intu-
bated

0.081 8.13 58.46 58.00 60.95 53.53 57.61 56.73 61.59 33.7

[Blood Gas/Blood] Lactate 0.274 27.36 62.73 62.79 63.67 56.42 57.73 60.67 63.37 33.2
[Blood Gas/Blood] Temper-
ature

0.212 21.18 61.49 62.06 61.91 54.31 58.65 58.74 62.87 33.1

[Blood Gas/Blood] Glucose 0.157 15.66 62.29 63.94 63.87 56.17 59.67 61.25 64.89 28.9
[Blood Gas/Blood] Potas-
sium, Whole Blood

0.147 14.69 61.37 63.88 63.54 55.54 58.53 60.19 64.36 28.8

[Chemistry/Blood] Alkaline
Phosphatase

0.277 27.71 66.94 69.28 68.55 59.41 67.12 66.30 70.94 26.5

[Chemistry/Blood] Biliru-
bin, Total

0.285 28.54 67.43 69.68 68.77 59.44 67.62 66.29 71.11 26.1

[Chemistry/Blood] Alanine
Aminotransferase (ALT)

0.279 27.95 67.44 69.90 69.11 59.62 67.64 66.49 71.41 25.7

[Chemistry/Blood] As-
parate Aminotransferase
(AST)

0.280 27.96 67.35 69.78 69.04 59.70 67.63 66.45 71.33 25.7

[Blood Gas/Blood] Free
Calcium

0.310 31.00 73.95 75.51 75.80 69.65 72.19 73.48 76.05 18.8

[Hematology/Blood] PT 0.555 55.51 80.33 81.85 80.56 74.48 78.77 78.60 81.35 16.7
[Hematology/Blood]
INR(PT)

0.555 55.51 80.29 81.85 80.56 74.48 78.77 78.60 81.35 16.7

[Hematology/Blood] PTT 0.547 54.71 80.71 82.42 80.90 74.97 78.92 78.83 81.53 16.1
[BLOOD GAS/BLOOD]
SPECIMEN TYPE

0.163 16.32 83.80 82.27 85.71 80.29 81.17 83.07 84.62 11.0

[Blood Gas/Blood] pO2 0.463 46.32 85.04 85.54 85.83 82.21 81.21 84.35 86.42 10.8
[Blood Gas/Blood] pCO2 0.463 46.31 85.13 85.55 85.83 82.22 81.21 84.36 86.43 10.8
[Blood Gas/Blood] Base
Excess

0.463 46.31 85.08 85.55 85.84 82.22 81.21 84.36 86.42 10.8

[Blood Gas/Blood] Calcu-
lated Total CO2

0.463 46.33 85.14 85.60 85.91 82.25 81.25 84.41 86.50 10.7

[Blood Gas/Blood] pH 0.492 49.23 86.02 86.82 86.76 83.39 82.04 85.38 87.14 10.0
[Chemistry/Blood] Cal-
cium, Total

0.874 87.42 93.27 93.23 93.93 92.79 91.34 93.66 95.40 5.6
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[Chemistry/Blood] Phos-
phate

0.878 87.82 93.67 93.69 94.35 93.17 91.59 93.89 95.71 5.1

[Hematology/Blood] MCV 0.903 90.34 95.69 95.51 95.98 95.02 92.50 95.39 97.20 3.8
[Hematology/Blood] MCH 0.903 90.34 95.63 95.51 95.98 95.02 92.51 95.39 97.19 3.8
[Hematology/Blood] Red
Blood Cells

0.903 90.34 95.65 95.51 95.99 95.01 92.50 95.39 97.19 3.8

[Hematology/Blood]
MCHC

0.903 90.34 95.69 95.50 95.99 95.02 92.50 95.39 97.19 3.8

[Hematology/Blood] White
Blood Cells

0.904 90.38 95.71 95.51 96.00 95.03 92.56 95.39 97.18 3.8

[Hematology/Blood] RDW 0.903 90.34 95.68 95.50 96.00 95.00 92.51 95.39 97.19 3.8
[Hematology/Blood]
Platelet Count

0.904 90.39 95.74 95.55 96.02 95.13 92.50 95.48 97.11 3.8

[Hematology/Blood]
Hemoglobin

0.904 90.36 95.74 95.55 96.03 95.05 92.55 95.42 97.19 3.8

[Chemistry/Blood] Magne-
sium

0.905 90.55 95.29 95.32 96.02 95.11 92.58 95.53 96.84 3.8

[Hematology/Blood] Hema-
tocrit

0.908 90.84 96.21 96.04 96.51 95.60 93.08 95.92 97.46 3.3

[Chemistry/Blood] Glucose 0.909 90.91 96.13 95.72 96.50 95.78 93.06 96.12 97.71 3.3
[Chemistry/Blood] Anion
Gap

0.908 90.80 96.17 95.77 96.53 95.77 93.17 96.21 97.82 3.3

[Chemistry/Blood] Bicar-
bonate

0.910 91.04 96.42 95.95 96.66 95.84 93.34 96.25 97.85 3.2

[Chemistry/Blood] Creati-
nine

0.912 91.20 96.56 95.99 96.76 95.86 93.31 96.25 97.81 3.1

[Chemistry/Blood] Urea Ni-
trogen

0.912 91.20 96.51 96.03 96.76 95.92 93.36 96.31 97.85 3.1

[Chemistry/Blood] Sodium 0.913 91.33 96.62 96.13 96.80 96.04 93.49 96.45 97.87 3.1
[Chemistry/Blood] Chlo-
ride

0.913 91.29 96.60 96.15 96.85 96.03 93.50 96.43 97.85 3.0

[Chemistry/Blood] Potas-
sium

0.914 91.38 96.60 96.16 96.92 96.18 93.52 96.57 97.98 3.0

Multi Lumen 0.435 43.46 95.31 95.60 97.17 95.99 96.28 96.97 97.01 2.3

Table 4: Performance of each medication administration event, sorted by perfor-
mance gain between Meta-Switch-Event vs. GRU-POP

Medication Administra-
tion Event Types

Freq. CNN RE
TAIN

GRU-
POP

Sub-
pop
Adap

Self
Adap

Com
bined
Adap

Meta-
Switch

Meta-
Switch-
Event

Gain
(GRU-
POP
vs.
Meta-
Switch-
Event.

[Medications] Insulin 0.004 0.36 2.62 23.57 1.37 0.66 52.45 60.84 51.83 5933.8
[Medications] Enoxaparin
(Lovenox)

0.015 1.46 6.75 34.31 7.50 5.83 47.34 41.17 44.77 877.3

[Medications] Omeprazole
(Prilosec)

0.011 1.09 6.77 17.64 6.13 2.78 17.72 17.03 20.73 619.6

[Medications] Lansoprazole
(Prevacid)

0.029 2.93 9.01 22.56 10.70 5.35 25.73 22.89 25.18 422.7

[Medications] Na Phos 0.019 1.89 6.34 8.49 11.20 4.91 23.64 21.52 24.60 366.8
[Medications] Haloperidol
(Haldol)

0.033 3.31 7.10 12.06 10.01 5.89 16.94 16.21 18.62 353.3

[Medications] Coumadin
(Warfarin)

0.015 1.50 7.14 12.43 9.60 6.46 12.16 11.70 12.55 345.9

[Medications] Sodium Bi-
carbonate 8.4%

0.026 2.62 9.34 13.69 11.85 5.71 24.92 19.58 23.78 336.9

[Antibiotics] Ampicillin 0.015 1.54 23.38 48.21 21.15 10.07 60.51 57.38 63.37 289.0
[Medications] Ranitidine
(Prophylaxis)

0.027 2.69 13.58 18.52 14.24 11.95 21.87 22.56 23.48 246.6

[Antibiotics] Fluconazole 0.025 2.50 21.47 47.83 24.57 11.85 59.32 59.27 58.81 234.2
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[Blood Products/Colloids]
Fresh Frozen Plasma

0.024 2.41 11.80 17.59 14.53 8.55 18.91 16.96 19.17 228.4

[Antibiotics] Piperacillin 0.032 3.19 12.74 27.93 20.28 9.63 31.38 32.10 32.87 211.7
[Medications] K Phos 0.067 6.69 18.00 25.17 21.08 16.60 32.14 30.64 32.39 206.1
[Medications] Diltiazem 0.024 2.44 13.82 27.76 21.00 9.56 32.45 31.07 32.18 202.5
[Blood Products/Colloids]
Albumin

0.048 4.81 17.84 26.85 21.47 12.60 34.30 30.17 31.71 185.1

[Medications] Dexmedeto-
midine (Precedex)

0.030 3.03 14.53 29.22 24.64 12.83 39.66 38.42 40.63 180.4

[Medications] Labetalol 0.025 2.50 18.22 36.50 24.93 15.16 41.77 41.25 43.73 175.3
[Antibiotics] Azithromycin 0.014 1.43 23.02 44.58 27.32 18.32 50.71 43.43 42.83 164.9
[Blood Products/Colloids]
Albumin

0.040 4.00 18.56 21.08 21.02 13.71 25.14 23.02 25.93 148.8

[Medications] Amiodarone 0.035 3.55 24.51 34.09 31.06 21.51 41.26 42.35 44.49 128.5
[Blood Products/Colloids]
OR FFP Intake

0.003 0.34 6.26 5.73 4.38 5.35 1.22 2.05 2.11 122.6

[Medications] Dopamine 0.017 1.65 41.28 61.22 37.79 22.10 61.95 57.72 59.00 119.7
[Antibiotics] Levofloxacin 0.032 3.22 24.72 33.41 28.72 17.29 39.46 34.74 37.03 119.4
[Medications] Thiamine 0.023 2.33 20.10 27.07 28.47 15.60 34.73 31.13 34.85 118.8
[Blood Products/Colloids]
Platelets

0.028 2.83 25.27 28.77 28.92 13.46 33.92 29.73 35.13 117.5

[Medications]
Acetaminophen-IV

0.028 2.75 35.08 44.09 34.62 17.31 49.88 44.36 48.76 116.3

[Medications] Epinephrine 0.010 0.98 37.63 35.58 34.90 30.36 46.00 46.20 48.54 113.6
[Blood Products/Colloids]
OR Packed RBC Intake

0.007 0.73 11.31 6.44 8.18 9.48 3.10 3.85 5.72 111.7

[Medications] Lorazepam
(Ativan)

0.079 7.92 26.60 40.82 32.62 22.42 40.67 38.71 40.49 111.3

[Medications] Nitroglycerin 0.026 2.57 27.10 35.43 35.27 24.33 42.35 38.73 43.95 110.2
[Medications] Folic Acid 0.013 1.27 21.47 22.99 30.14 13.08 31.49 29.44 27.48 90.2
[Blood Products/Colloids]
Packed Red Blood Cells

0.113 11.28 31.10 34.10 34.62 24.19 31.88 29.58 31.82 80.3

[Medications] Magnesium
Sulfate

0.209 20.90 39.20 40.15 37.32 31.33 39.94 39.56 40.95 79.5

[Medications] Hydralazine 0.082 8.19 35.02 46.67 41.25 29.86 45.20 45.81 47.66 75.1
[Antibiotics] Ceftriaxone 0.045 4.51 39.29 49.14 46.75 32.14 50.61 48.14 50.37 70.1
[Medications] Metoprolol 0.139 13.87 40.43 50.15 47.09 35.10 50.03 48.23 51.04 65.8
[Medications] Nicardipine 0.022 2.18 41.27 57.31 51.79 37.49 63.34 61.12 61.67 65.8
[Blood Products/Colloids]
OR Colloid Intake

0.003 0.34 2.15 2.11 5.62 1.38 1.06 0.98 1.58 64.8

[Medications] Morphine
Sulfate

0.105 10.46 35.70 43.69 45.22 33.67 46.60 45.87 48.92 63.5

[Medications] Calcium Glu-
conate

0.158 15.81 44.69 50.20 46.03 35.82 47.16 45.23 48.74 63.3

[Medications] Hydromor-
phone (Dilaudid)

0.092 9.23 46.13 51.50 51.07 40.62 54.24 56.20 57.49 61.0

[Medications] Phenyle-
phrine

0.117 11.72 47.26 64.02 56.17 42.32 65.78 63.43 65.46 57.6

[Medications] Vasopressin 0.043 4.32 48.72 59.36 56.86 47.00 67.15 69.36 71.10 56.8
[Antibiotics] Cefazolin 0.042 4.24 50.23 59.91 57.90 53.46 61.63 65.61 67.93 52.5
[Medications] KCL 0.189 18.86 50.10 55.70 52.08 43.17 53.05 52.78 54.61 51.1
[Blood Products/Colloids]
OR Platelet Intake

0.004 0.38 7.48 7.22 7.45 12.98 1.54 2.88 3.70 48.9

[Medications] Dilantin 0.031 3.06 47.67 56.09 57.09 46.39 60.16 57.70 61.10 48.6
[Antibiotics] Acyclovir 0.030 3.03 55.38 67.97 63.29 48.40 76.48 73.71 76.91 48.5
[Medications] Furosemide 0.264 26.37 53.38 60.51 58.29 48.56 60.23 60.32 62.30 47.0
[Antibiotics] Ciprofloxacin 0.100 9.95 51.48 62.13 62.14 49.77 62.75 60.89 62.85 44.1
[Medications] Nore-
pinephrine

0.122 12.15 60.11 67.82 68.36 61.07 71.39 72.36 71.81 34.5

[Medications] Propofol 0.192 19.18 57.77 65.20 66.72 56.32 69.12 67.25 69.93 34.5
[Medications] ACD-A Cit-
rate

0.038 3.80 66.52 65.68 70.10 65.86 74.22 76.98 80.93 33.9

[Medications] Pantoprazole
(Protonix)

0.218 21.75 61.43 66.93 65.96 54.67 63.87 62.41 64.62 31.7

[Antibiotics] Cefepime 0.132 13.22 63.46 67.47 70.90 63.49 70.52 73.68 73.96 31.6
[Medications] Potassium
Chloride

0.342 34.25 63.73 67.93 66.76 56.98 66.33 64.93 67.29 31.3

[Medications] Fentanyl 0.275 27.46 66.16 71.43 70.32 62.90 72.06 72.39 74.75 29.8
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[Medications] Famotidine
(Pepcid)

0.201 20.14 66.36 71.36 70.52 62.19 69.16 69.20 70.46 27.6

[Antibiotics] Metronidazole 0.111 11.08 65.55 71.70 74.28 65.56 74.88 73.43 75.71 26.4
[Antibiotics] Vancomycin 0.331 33.07 67.78 70.14 73.83 64.72 71.41 72.68 73.64 25.2
[Blood Products/Colloids]
OR Cell Saver Intake

0.002 0.23 7.65 7.03 11.63 7.20 1.35 2.96 5.82 24.3

[Medications] Heparin
Sodium

0.120 12.02 72.86 75.11 75.31 68.58 75.92 76.01 77.45 23.8

[Medications] Midazolam
(Versed)

0.201 20.06 74.08 75.53 77.06 69.11 76.02 76.38 77.23 20.9

[Antibiotics] Meropenem 0.097 9.65 72.10 78.54 79.03 72.36 78.95 79.93 81.23 20.7

Table 5: Performance of each procedure event, sorted by performance gain between
Meta-Switch-Event vs. GRU-POP

Procedure Event Types Freq. CNN RE
TAIN

GRU-
POP

Sub-
pop
Adap

Self
Adap

Com
bined
Adap

Meta-
Switch

Meta-
Switch-
Event

Gain
(GRU-
POP
vs.
Meta-
Switch-
Event.

Abdominal X-Ray 0.008 0.85 1.17 1.13 1.45 1.03 3.28 2.97 2.40 896.9
Interventional Radiology 0.010 0.95 1.23 1.65 1.40 1.36 1.55 1.37 1.59 835.6
Endoscopy 0.005 0.54 1.52 2.33 2.12 1.39 2.86 4.15 3.44 761.4
X-ray 0.027 2.69 3.55 3.97 3.93 3.37 5.18 5.56 6.05 557.9
Stool Culture 0.020 1.99 3.09 3.55 3.66 2.83 4.42 4.12 4.63 538.7
Trans Esophageal Echo 0.007 0.74 2.42 1.91 2.42 1.57 1.60 1.38 1.78 435.4
EEG 0.012 1.15 3.59 3.87 3.87 2.82 3.93 4.23 4.73 421.5
Family meeting held 0.013 1.34 2.87 4.65 4.65 2.77 5.55 5.02 6.01 405.1
Nasal Swab 0.010 0.97 3.53 1.95 3.12 2.13 1.29 1.55 1.65 334.1
Bronchoscopy 0.027 2.74 4.95 5.73 5.85 4.17 5.39 5.06 6.07 307.1
Transthoracic Echo 0.030 2.98 6.24 5.93 6.18 5.53 5.69 4.86 5.58 290.5
Sputum Culture 0.039 3.89 5.92 7.04 7.75 5.84 7.68 7.47 9.15 284.5
Sheath 0.003 0.34 9.28 27.62 13.70 16.94 28.01 24.89 31.71 246.8
Urine Culture 0.058 5.84 6.82 8.60 8.40 6.76 7.64 7.30 9.71 235.1
Pan Culture 0.022 2.20 4.27 7.72 6.26 4.80 4.25 5.03 5.59 222.0
Ultrasound 0.044 4.38 6.79 8.43 8.29 5.44 6.39 5.83 7.23 220.7
Intubation 0.028 2.75 4.62 6.89 8.06 4.72 4.33 3.56 6.53 202.2
Blood Cultured 0.082 8.23 11.91 13.87 13.17 11.07 13.12 13.30 14.96 200.8
Family updated by MD 0.021 2.08 7.37 13.29 12.42 5.29 13.44 12.15 13.47 197.7
Family updated by RN 0.036 3.57 21.58 28.13 20.87 9.89 27.66 22.20 27.43 168.0
EKG 0.078 7.80 14.07 13.04 13.40 11.09 12.37 12.34 13.32 167.9
OR Sent 0.024 2.45 7.56 9.37 7.93 5.99 5.35 5.32 6.53 165.3
Magnetic Resonance Imag-
ing

0.016 1.63 5.43 5.26 6.28 3.92 3.42 2.96 3.70 157.8

OR Received 0.025 2.54 8.10 10.01 9.42 9.06 5.87 6.32 7.60 143.1
CT scan 0.078 7.78 17.55 17.97 18.49 12.36 14.13 13.51 15.04 124.1
Extubation 0.071 7.14 15.35 15.46 19.62 16.44 7.76 13.41 13.24 121.5
Hemodialysis 0.027 2.73 29.79 35.38 33.30 26.06 42.50 42.18 45.35 114.5
Non-invasive Ventilation 0.025 2.54 22.63 44.24 39.91 34.32 54.24 55.21 57.67 100.7
Chest X-Ray 0.277 27.73 43.93 46.46 45.38 37.72 41.91 41.66 43.40 64.9
PA Catheter 0.026 2.63 47.85 71.10 63.99 53.52 70.65 70.51 71.85 39.4
Chest Tube Removed 0.011 1.06 14.81 18.56 21.22 13.12 6.27 10.19 11.19 36.7
16 Gauge 0.056 5.57 60.34 64.81 68.39 60.64 64.30 67.66 68.97 34.3
22 Gauge 0.105 10.47 60.96 64.80 70.25 63.67 68.50 70.35 70.59 31.2
CCO PAC 0.020 2.01 67.69 76.08 77.98 72.24 74.37 79.00 80.35 21.4
Dialysis - CRRT 0.051 5.10 78.61 76.03 80.54 73.32 82.66 83.91 86.04 19.1
18 Gauge 0.229 22.88 77.19 76.84 81.25 75.86 73.38 78.80 77.65 18.7
Cordis/Introducer 0.062 6.16 78.56 83.52 84.65 79.22 84.46 87.90 87.99 14.5
Indwelling Port (Porta-
Cath)

0.024 2.37 90.13 98.35 88.72 81.03 97.07 96.40 97.33 11.5

20 Gauge 0.391 39.08 83.66 84.61 88.05 84.64 82.91 87.13 87.17 10.5
Dialysis Catheter 0.104 10.41 90.05 91.86 92.39 89.24 92.76 92.81 92.63 6.8
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PICC Line 0.273 27.32 92.86 91.98 93.51 92.10 92.88 93.32 93.34 5.9
Arterial Line 0.519 51.92 93.17 93.71 94.71 92.60 92.68 94.34 94.92 4.8
Invasive Ventilation 0.501 50.08 94.95 95.81 95.95 94.97 95.56 95.90 96.31 3.6

Table 6: Performance of each physiological event, sorted by performance gain
between Meta-Switch-Event vs. GRU-POP

Physiological Event
Types

Freq. CNN RE
TAIN

GRU-
POP

Sub-
pop
Adap

Self
Adap

Com
bined
Adap

Meta-
Switch

Meta-
Switch-
Event

Gain
(GRU-
POP
vs.
Meta-
Switch-
Event.

Cardiovascular: LUE Color 0.544 54.38 76.35 78.24 77.78 71.63 76.94 77.10 80.25 19.6
Cardiovascular: RUE Color 0.547 54.74 76.65 78.38 77.91 72.11 77.01 77.31 80.43 19.5
Cardiovascular: LLE Color 0.560 55.96 77.05 78.90 78.38 71.99 77.33 77.69 80.72 19.0
Cardiovascular: LUE Temp 0.555 55.51 77.03 79.30 78.80 73.04 78.01 78.16 81.11 18.6
Cardiovascular: RLE Color 0.563 56.30 77.24 79.00 78.79 72.44 77.36 78.08 80.92 18.4
Cardiovascular: RUE Temp 0.558 55.82 77.32 79.48 78.97 73.44 78.10 78.30 81.25 18.4
Cardiovascular: LLE Temp 0.571 57.11 77.62 79.79 79.34 73.36 78.29 78.61 81.35 18.0
Cardiovascular: RLE Temp 0.574 57.43 77.89 79.93 79.69 73.83 78.30 78.89 81.44 17.5
Routine Vital Signs: Arte-
rial Blood Pressure dias-
tolic

0.496 49.60 91.64 91.64 93.93 91.59 90.65 92.75 93.36 5.6

Routine Vital Signs: Arte-
rial Blood Pressure systolic

0.496 49.60 91.66 91.64 93.94 91.59 90.65 92.75 93.36 5.6

Routine Vital Signs: Arte-
rial Blood Pressure mean

0.497 49.75 91.87 91.79 94.02 91.53 90.70 92.79 93.42 5.5

Respiratory: Peak Insp.
Pressure

0.496 49.64 93.92 94.22 95.13 93.46 92.67 93.92 94.71 4.1

Respiratory: PEEP set 0.504 50.42 94.57 94.92 95.67 94.05 93.39 94.55 95.24 3.7
Respiratory: Inspired O2
Fraction

0.642 64.20 95.31 95.85 96.11 95.07 94.80 96.13 96.32 3.3

Routine Vital Signs: Tem-
perature Fahrenheit

0.941 94.15 98.05 97.90 98.56 97.81 98.45 98.56 98.62 1.3

Respiratory: Respiratory
Rate

0.994 99.39 99.70 99.92 99.86 99.86 99.92 99.91 99.92 0.1

Respiratory: O2 saturation
pulseoxymetry

0.992 99.23 99.81 99.81 99.93 99.77 99.79 99.78 99.85 0.1

Routine Vital Signs: Heart
Rhythm

0.995 99.47 99.88 99.92 99.97 99.90 99.94 99.90 99.91 0.0

Routine Vital Signs: Heart
Rate

0.995 99.55 99.91 99.96 99.98 99.97 99.96 99.96 99.97 0.0
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